import numpy as npimport os, pickle, random, datetimefrom keras.models import Sequentialfrom keras.layers import Dense, Activation, LSTMFOLDERS = [ {"class": 1, "folder": "/data1/linzn/data/ch_g729a_100_10000ms_FEAT"}, # The folder that contains positive data files. {"class": 0, "folder": "/data1/linzn/data/ch_g729a_0_10000ms_FEAT"} # The folder that contains negative data files.]SAMPLE_LENGTH = 10000 # The sample length (ms)BATCH_SIZE = 32 # batch sizeITER = 30 # number of iterationFOLD = 5 # = NUM_SAMPLE / number of testing samples'''Get the paths of all files in the folder'''def get_file_list(folder): file_list = [] for file in os.listdir(folder): file_list.append(os.path.join(folder, file)) return file_list'''Read codeword file-------------input file_path The path to an ASCII file. Each line contains three integers: x1 x2 x3, which are the three codewords of the frame. There are (number of frame) lines in total. output the list of codewords'''def parse_sample(file_path): file = open(file_path, 'r') lines = file.readlines() sample = [] for line in lines: line_split = line.strip("\r\n\t").strip().split("\t") sample.append(line_split) return sample'''Save variable in pickle'''def save_variable(file_name, variable): file_object = open(file_name, "wb") pickle.dump(variable, file_object) file_object.close()'''Pruned RNN-SM training and testing'''if __name__ == '__main__': all_files = [(item, folder["class"]) for folder in FOLDERS for item in get_file_list(folder["folder"])] random.shuffle(all_files) save_variable('all_files.pkl', all_files) all_samples_x = [(parse_sample(item[0])) for item in all_files] all_samples_y = [item[1] for item in all_files] np_all_samples_x = np.asarray(all_samples_x) np_all_samples_y = np.asarray(all_samples_y) save_variable('np_all_samples_x.pkl', np_all_samples_x) save_variable('np_all_samples_y.pkl', np_all_samples_y) file_num = len(all_files) sub_file_num = int(file_num / FOLD) x_test = np_all_samples_x[0: sub_file_num] # The samples for testing y_test = np_all_samples_y[0: sub_file_num] # The label of the samples for testing x_train = np_all_samples_x[sub_file_num: file_num] # The samples for training y_train = np_all_samples_y[sub_file_num: file_num] # The label of the samples for training print("Building model") model = Sequential() model.add(LSTM(50, input_length=int(SAMPLE_LENGTH / 10), input_dim=3, return_sequences=True)) # first layer model.add(LSTM(50)) # second layer model.add(Dense(1)) # output layer model.add(Activation('sigmoid')) # activation function model.compile(loss='binary_crossentropy', optimizer='adam', metrics=["accuracy"]) print("Training") for i in range(ITER): model.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epoch=1, validation_data=(x_test, y_test)) model.save('model_%d.h5' % (i + 1))